Dynamic Additively Weighted Voronoi Diagrams in 2D
نویسندگان
چکیده
In this paper we present a dynamic algorithm for the construction of the additively weighted Voronoi diagram of a set of weighted points on the plane. The novelty in our approach is that we use the dual of the additively weighted Voronoi diagram to represent it. This permits us to perform both insertions and deletions of sites easily. Given a set B of n sites, among which h sites have non-empty Voronoi cell, our algorithm constructs the additively weighted Voronoi diagram of B in O(nT (h) + h log h) expected time, where T (k) is the time to locate the nearest neighbor of a query site within a set of k sites with non-empty Voronoi cell. Deletions can be performed for all sites whether or not their Voronoi cell is empty. The space requirements for the presented algorithm is O(n). Our algorithm is simple to implement and experimental results suggest an O(n log h) behavior. Key-words: additively weighted Voronoi diagram; Delaunay graph; dual graph; dynamic algorithm Work partially supported by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project under Contract No IST-2000-26473 (ECG Effective Computational Geometry for Curves and Surfaces). ∗ INRIA Sophia-Antipolis, Project PRISME, 2004 Route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France, email: [email protected] † INRIA Sophia-Antipolis, Project PRISME, 2004 Route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France, email: [email protected] Diagrammes de Voronoi Additifs Dynamiques en 2D Résumé : Ce rapport décrit un algorithme dynamique pour construire le diagramme de Voronoï à poids additifs d’un ensemble de points pondérés du plan. L’algorithme proposé représente le diagramme à poids additif à travers son dual. Il est incrémental et pleinement dynamique, c’est à dire permet l’insertion ou la suppression de sites. Une analyse randomisée sur l’ordre d’insertion montre que l’algorithme construit le le diagramme de Voronoï à poids additifs d’un ensemble de n sites parmi lesquelles h ont une cellule de Voronoi non vide, en temps moyen O(nT (h)+h logh) où T (k) est le temps nécessaire pour répondre à une requête de plus proche voisin (pour une distance à poids additifs) sur un ensemble de k sites à cellules non vides. L’espace mémoire utilisé est O(n). L’algorithme est simple à implémenter et une étude expérimentale laisse présumer un comportement asymptotique en O(n log h). Mots-clés : diagramme de Voronoï; triangulation de Delaunay; diagramme de Voronoï à poids additifs; algorithme dynamique Dynamic additively weighted Voronoi diagrams in 2D 3
منابع مشابه
Convex Hull and Voronoi Diagram of Additively Weighted Points
We provide a complete description of dynamic algorithms for constructing convex hulls and Voronoi diagrams of additively weighted points of R. We present simple algorithms and provide a complete description of all the predicates. The algorithms have been implemented in R and experimental results are reported. Our implementation follows the CGAL design and, in particular, is made both robust and...
متن کامل3B.3 Mesh Sizing with Additively Weighted Voronoi Diagrams
We address the problem of generating mesh sizing functions from a set of points with specified sizing values. The sizing functions are shown to be maximal and K-Lipschitz, with arbitrary parameter K provided by the user. These properties allow generating low complexity meshes with adjustable gradation. After constructing an additively weighted Voronoi diagram, our algorithm provides fast and ac...
متن کاملAdditively Weighted Voronoi Diagram on the Oriented Projective Plane Additively Weighted Voronoi Diagram on the Oriented Projective Plane
We consider Voronoi diagrams deened on the oriented projective plane T 2. In this geometry, the closest and furthest site diagrams are antipodal. We give a simple on-line incremental algorithm for constructing the additively weighted diagram. This diagram, which may be disconnected in Euclidean plane, is always connected in T 2 and has exactly 3n ? 6 edges and 2n ? 4 vertices, where n is the nu...
متن کاملAdditively Weighted Voronoi Diagrams for Optimal Sequenced Route Queries
The Optimal Sequenced Route (OSR) query strives to find a route of minimum length starting from a given source location and passing through a number of typed locations in a specific sequence imposed on the types of the locations. In this paper, we propose a precomputation approach to OSR query in vector spaces. We exploit the geometric properties of the solution space and theoretically prove it...
متن کاملPolyline-sourced Geodesic Voronoi Diagrams on Triangle Meshes
This paper studies the Voronoi diagrams on 2-manifold meshes based on geodesic metric (a.k.a. geodesic Voronoi diagrams or GVDs), which have polyline generators. We show that our general setting leads to situations more complicated than conventional 2D Euclidean Voronoi diagrams as well as point-source based GVDs, since a typical bisector contains line segments, hyperbolic segments and paraboli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002